Nilpotent Symmetry Invariance in the Superfield Formulation: the (non-)abelian 1-form Gauge Theories

نویسنده

  • R. P. MALIK
چکیده

We capture the off-shell as well as the on-shell nilpotent Becchi-Rouet-StoraTyutin (BRST) and anti-BRST symmetry invariance of the Lagrangian densities of the four (3 + 1)-dimensional (4D) (non-)Abelian 1-form gauge theories within the framework of the superfield formalism. In particular, we provide the geometrical interpretations for (i) the above nilpotent symmetry invariance, and (ii) the above Lagrangian densities, in the language of the specific quantities defined in the domain of the above superfield formalism. Some of the subtle points, connected with the 4D (non-)Abelian 1-form gauge theories, are clarified within the framework of the above superfield formalism where the 4D ordinary gauge theories are considered on the (4, 2)-dimensional supermanifold parametrized by the four spacetime coordinates x (with μ = 0, 1, 2, 3) and a pair of Grassmannian variables θ and θ̄. One of the key results of our present investigation is a great deal of simplification in the geometrical understanding of the nilpotent (anti-)BRST symmetry invariance. PACS numbers: 11.15.-q, 12.20.-m, 03.70.+k

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nilpotent symmetry invariance in the superfield formalism: the 1-form (non-)Abelian gauge theories

We capture the well-known off-shell as well as the on-shell nilpotent BecchiRouet-Stora-Tyutin (BRST) and anti-BRST symmetry invariance(s) of the Lagrangian densities of the four (3 + 1)-dimensional (4D) 1-form (non-)Abelian gauge theories within the framework of the superfield formalism. In particular, we provide the geometrical interpretations for (i) the above nilpotent symmetry invariance(s...

متن کامل

Nilpotent Symmetry Invariance In Superfield Formalism: 1-Form (Non-)Abelian Gauge Theories

We capture the well-known off-shell as well as the on-shell nilpotent BecchiRouet-Stora-Tyutin (BRST) and anti-BRST symmetry transformations for the Lagrangian densities of the four (3 + 1)-dimensional (4D) 1-form (non-)Abelian gauge theories within the framework of the superfield formalism. In particular, we provide the geometrical interpretations for (i) the above nilpotent symmetry invarianc...

متن کامل

Nilpotent symmetry invariance in the superfield formalism: the (non-)Abelian 1-form gauge theories

We capture the off-shell as well as the on-shell nilpotent Becchi-Rouet-StoraTyutin (BRST) and anti-BRST symmetry invariance of the Lagrangian densities of the four (3 + 1)-dimensional (4D) (non-)Abelian 1-form gauge theories within the framework of the superfield formalism. In particular, we provide the geometrical interpretations for (i) the above nilpotent symmetry invariance, and (ii) the a...

متن کامل

Superfield approach to nilpotent (anti-)BRST symmetries for the free Abelian 2-form gauge theory

We derive the off-shell nilpotent Becchi-Rouet-Stora-Tyutin (BRST) and antiBRST symmetry transformations for all the fields of a free Abelian 2-form gauge theory by exploiting the geometrical superfield approach to BRST formalism. The above four (3 + 1)dimensional (4D) theory is considered on a (4, 2)-dimensional supermanifold parameterized by the four even spacetime variables x (with μ = 0, 1,...

متن کامل

Superfield approach to a novel symmetry for non - Abelian gauge theory

In the framework of superfield formalism, we demonstrate the existence of a new local, covariant, continuous and nilpotent (dual-BRST) symmetry for the BRST invariant Lagrangian density of a self-interacting two (1 + 1)-dimensional (2D) non-Abelian gauge theory (having no interaction with matter fields). The local and nilpotent Noether conserved charges corresponding to the above continuous sym...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008